Grading System

Course Name: M.TECH(MWM)
Scheme of Examination w.e.f. 2016-17
Semester/Year: I SEM/I YEAR

<table>
<thead>
<tr>
<th>S. No.</th>
<th>Subject Code</th>
<th>Subject Name</th>
<th>Maximum Marks Allotted</th>
<th>Hours/Week</th>
<th>Credit</th>
<th>Total Marks</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>Theory</td>
<td>Practical</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>End Sem.</td>
<td>Mid Sem</td>
<td>Quiz, Assignment</td>
<td>End Sem</td>
</tr>
<tr>
<td>1</td>
<td>MTMW-101</td>
<td>ADVANCED MATHEMATICS</td>
<td>100</td>
<td>30</td>
<td>20</td>
<td>-</td>
</tr>
<tr>
<td>2</td>
<td>MTMW-102</td>
<td>MICROCONTROLLER SYSTEM DESIGN</td>
<td>100</td>
<td>30</td>
<td>20</td>
<td>-</td>
</tr>
<tr>
<td>3</td>
<td>MTMW-103</td>
<td>EMT THEORY</td>
<td>100</td>
<td>30</td>
<td>20</td>
<td>-</td>
</tr>
<tr>
<td>4</td>
<td>MTMW-104</td>
<td>ADVANCED MICROWAVE DEVICES</td>
<td>100</td>
<td>30</td>
<td>20</td>
<td>-</td>
</tr>
<tr>
<td>5</td>
<td>MTMW-105</td>
<td>ANTENNA ENGINEERING</td>
<td>100</td>
<td>30</td>
<td>20</td>
<td>-</td>
</tr>
<tr>
<td>6</td>
<td>MTMW-106</td>
<td>LAB-I(102,103)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>50</td>
</tr>
<tr>
<td>7</td>
<td>MTMW-107</td>
<td>LAB-II(104,105)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>50</td>
</tr>
<tr>
<td>8</td>
<td>MTMW-108</td>
<td>COMPERHENSIV VIVA-I</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>50</td>
</tr>
<tr>
<td></td>
<td>TOTAL</td>
<td></td>
<td>500</td>
<td>150</td>
<td>100</td>
<td>150</td>
</tr>
</tbody>
</table>

L: Lecture
T: Tutorial
P: Practical
Grading System
Course Name: M.TECH(MWM)
Scheme of Examination w.e.f. 2016-17
Semester/Year :II SEM/I YEAR

<table>
<thead>
<tr>
<th>S. No.</th>
<th>Subject Code</th>
<th>Subject Name</th>
<th>Maximum Marks Allocated</th>
<th>Hours/ Week</th>
<th>Credit</th>
<th>Total Marks</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Theory</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>End Sem.</td>
<td>Mid Sem</td>
<td>Quiz, Assignment</td>
<td>End Sem</td>
</tr>
<tr>
<td>1</td>
<td>MTMW -201</td>
<td>INFORMATION THEROY & CODING</td>
<td>100</td>
<td>30</td>
<td>20</td>
<td>-</td>
</tr>
<tr>
<td>2</td>
<td>MTMW -202</td>
<td>DSP APPLICATION</td>
<td>100</td>
<td>30</td>
<td>20</td>
<td>-</td>
</tr>
<tr>
<td>3</td>
<td>MTMW -203</td>
<td>ADVANCED COMMUNICATION SYSTEM</td>
<td>100</td>
<td>30</td>
<td>20</td>
<td>-</td>
</tr>
<tr>
<td>4</td>
<td>MTMW -204</td>
<td>MICROWAVE MESURMENT</td>
<td>100</td>
<td>30</td>
<td>20</td>
<td>-</td>
</tr>
<tr>
<td>5</td>
<td>MTMW -205</td>
<td>REASEARCH METHODOLOGY</td>
<td>100</td>
<td>30</td>
<td>20</td>
<td>-</td>
</tr>
<tr>
<td>6</td>
<td>MTMW -206</td>
<td>LAB-III(201)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>50</td>
</tr>
<tr>
<td>7</td>
<td>MTMW -207</td>
<td>LAB-IV(202)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>50</td>
</tr>
<tr>
<td>8</td>
<td>MTMW -208</td>
<td>COMPERHENSHIV VIVA-II</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>50</td>
</tr>
<tr>
<td></td>
<td>TOTAL</td>
<td></td>
<td>500</td>
<td>150</td>
<td>100</td>
<td>150</td>
</tr>
</tbody>
</table>

L: Lecture T: Tutorial P: Practical
SARVEPALLI RADHAKRISHNAN UNIVERSITY, BHOPAL

Grading System
Course Name: M.TECH(MWM)
Scheme of Examination w.e.f. **2016-17**
Semester/Year: III SEM/II YEAR

<table>
<thead>
<tr>
<th>S. No.</th>
<th>Subject Code</th>
<th>Subject Name</th>
<th>Maximum Marks Allotted</th>
<th>Hours/ Week</th>
<th>Credit</th>
<th>Total Marks</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>Theory</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>End Sem.</td>
<td>Mid Sem</td>
<td>Quiz, Assignment</td>
<td>End Sem</td>
</tr>
<tr>
<td>1</td>
<td>MTMW -DP(1)</td>
<td>DESSERTATION (PHASE-I)</td>
<td></td>
<td></td>
<td>100</td>
<td>100</td>
</tr>
<tr>
<td></td>
<td></td>
<td>TOTAL</td>
<td></td>
<td></td>
<td>100</td>
<td>100</td>
</tr>
</tbody>
</table>

L: Lecture
T: Tutorial
P: Practical
<table>
<thead>
<tr>
<th>S. No.</th>
<th>Subject Code</th>
<th>Subject Name</th>
<th>Maximum Marks Allotted</th>
<th>Hours/ Week</th>
<th>Credit</th>
<th>Total Marks</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>Theory</td>
<td>Practical</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>End Sem.</td>
<td>Mid Sem.</td>
<td>Quiz, Assignment</td>
<td>End Sem</td>
</tr>
<tr>
<td>1</td>
<td>MTMW -DP(II)</td>
<td>DESSERTATION (PHASE-II)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>150</td>
</tr>
<tr>
<td></td>
<td></td>
<td>TOTAL</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>150</td>
</tr>
</tbody>
</table>

L: Lecture
T: Tutorial
P: Practical
MTMW 101-ADVANCED COMPUTATIONAL MATHEMATICS

Unit 1
Linear Algebra: Linear transformation, vector spaces, hash function, Hermite polynomial, Heavisite’s unit function and error function. Elementary concepts of Modular mathematics

Unit 2
Solution of Partial Differential Equation (PDE) by separation of variable method, numerical solution of PDE (Laplace, Poisson’s, Parabolic) using finite difference methods, Elementary properties of FT, DFT, WFT, Wavelet transform, Haar transform.

Unit 3
Probability, compound probability and discrete random variable. Binomial, Normal and Poisson’s distributions, Sampling distribution, elementary concept of estimation and theory of hypothesis, recurred relations.

Unit 4
Stochastic process, Markov process transition probability transition probability matrix, just and higher order Markov process, Application of Eigen value problems in Markov Process, Markov chain. Queuing system, transient and steady state, traffic intensity, distribution queuing system, concepts of queuing models (M/M/1: Infinity/ Infinity/ FC FS), (M/M/1: N/ Infinity/ FC FS), (M/M/S: Infinity/ Infinity/ FC FS)

Unit 5
Operations of fuzzy sets, fuzzy arithmetic & relations, fuzzy relation equations, fuzzy logics. MATLAB introduction, programming in MATLAB scripts, functions and their application.

Reference Books:
3. Applied Numerical Methods with MATLAB by Steven C Chapra, TMH.
4. Advance Engg Mathematics, O’ Neil, Cengage (Thomson)
5. Introductory Methods of Numerical Analysis by S.S. Shastry,
6. Introduction of Numerical Analysis by Forberg
8. Numerical Mathematical Analysis By James B. Scarborough
9. Fourier Transforms by J. N. Sheddon
10. Fuzzy Logic in Engineering by T. J. Ross
11. Fuzzy Sets Theory & its Applications by H. J. Zimmersoms
MTMW–102 MICRO CONTROLLER SYSTEM DESIGN

Unit 1
Review of 8-Bit and 16-bit microprocessor, support chips and interfacing techniques, single chip micro-computers, architecture, program and data memory, ports, input Output interfacing and programming.

Unit 2
Single chip micro controllers- INTEL 8051/ 8751, MOTOROLA 68HC0/68HC11 architecture, instruction set and programming, Memory mapping, addressing modes, Registers, expanded modes. Interrupt handling timing and serial I / O.

Unit 3
Software development Modular approach, integrated software development environment, Object oriented interfacing and programming, Recursion and debugging.

Unit 4
ATMEL 89C51 / 52 and PIC micro-Controllers- Case studies.
Design and application of Micro-Controller in Data acquisition, Embedded controllers, Process control etc.

Unit 5
DSP Processor architecture and sample design using TI – DSP.

Reference Books:

1. Embedded Systems 8051 By Majidi & Majidi
2. Design With Micro-Controllers By John P. Peatman Tmh
3. Embedded Micro-Computers System By Jonathan W. Valvano
4. Data Manuals – Intel Motorola.
MTMW – 103 EMT Theory

Unit 1
Introduction & review of Electromagnetic Field theory, boundary value problems.

Unit 2
Time varying fields, Maxwell’s equation, source concepts, Duality equivalence principle, induction theorem, reciprocity theorem, Green's function & applications.

Unit 3
Plane wave function, Plane waves, Rectangular waveguides Models, Cylindrical wave function, circular guide modes, Coaxial Line modes.

Unit 4
Spherical wave function; Wave transformation.

Reference Books:

1. Plonsey & Collin; Principle & Application of EM Fields
2. R. F. Harrington; Time Harmonic EM Fields
3. Collins; Fields Theory of Guided Waves
4. Ramo & Whinnery; Fields & Waves in Modren Radio.
MTMW –104 Advanced Microwave Devices

Unit 1
Electrostatic electron optics Analogy with physical optics, Electrostatic lens fields paraxial ray equation, general lens properties aberrations, magnetic lenses focusing action, magnetic fields equation of motion of paraxial electron defects. General equation of motion in the combined electric and magnetic fields.

Unit 2
Electron Microscope Structures, relation of resolving power, Klystrons bunching. Principle cavity Resonators, mechanism of energy interchange, Klystron amplifiers, Reflex Klystron Oscillator, Power Relation, Magnetron Structural forms, Multicavity Magnetrons their Resonant cavity Resonators, mechanism of energy interchange, Klystron amplifiers, Reflex Klystron

Unit 3
Traveling Wave Tube, Backward Oscillators, Characteristics and performance of other Microwave tubes, Principle & Theory of MASERs & LASERs, Varactor diodes operations, Paramagnetic amplifier, Manley-Rowe equation, Tunnel diode theory, Use as an amplifier, Mounting Micro strip.

Unit 4
P-I-N diodes, Oscillators, Semiconductor devices at Microwave frequency. Gunn effect devices theory, Power transfer, efficiency, mounting, integrated circuits, micro strip transmission lines, Monolithic circuits.

Reference Books:

1. Vacuum Tubes; Spagenberg
2. Theory & Application of Microwave Tubes; Bronwell Beam
3. Microwave Semiconductor Devices; Shurner
4. Microwave Electrons. Slater
MTMW –105 Antenna Engineering

Unit 1
Review of e.m. waves, fields solution in free space, generalized plane wave representation of spherical and other waves, radiation conditions at infinity, elementary current and aperture element sources, Equivalence theorems, antenna impedance, mutual impedance calculation between wire antennas and aperture antenna in infinite conductor plane.

Unit 2
Relationship between radiation pattern and source current distributions, Radiation pattern and aperture field distribution, Diploes, helical and rhombus antennas.

Unit 3
Antenna arrays, mathematical theory of uniform and non-uniform arrays. Beam width, SLL, gain of long arrays. Planar arrays, change in element radiation pattern in array environment. Trade off between SLL and beam width, design by Tsebycheff and other methods, optimum Taylor’s distribution.

Unit 4
Aperture antenna analysis, box and horn antenna, reflector antennas, parabolic and cassagrain antenna design. Corrugated horns, Lens antennas – dielectric and metallic.

Unit 5
Antenna bandwidth considerations, broadband antennas. Electronically scanned arrays, design considerations feed systems. Strip line antennas, design and applications.

Reference Books:

1. Antenna Engineering – Krans

2. Electromagnetic Fields & Radiating Systems – Jordan & Balmaini
MTMW – 201 INFORMATION THEORY AND CODING

Unit 1
Introduction to uncertainty, information, entropy and its properties, entropy of binary memory less source and its extension to discrete memory less source, coding theorem, data compression, prefix coding, HUFFMAN coding, Lempel-Ziv Coding

Unit 2
Discrete memory less channels, Binary symmetric channel, mutual information & its properties, channel capacity, channel coding theorem, and its application to BSC, Shannon’s theorem on channel capacity, capacity of channel of infinite bandwidth, Bandwidth signal to noise Trade off, Practical communication system in light of shannon’s theorem, Fading Channel.

Unit 3
Group and field of Binary system Galois field and its construction in GF (2) and its basic properties, vector spaces and matrices in GF(2), Linear Block Codes, Systematic codes, and its encoding circuits, syndrome and error detection ,minimum distance, error detecting and correcting capabilities of block code, Decoding circuits, Probability of undetected error for linear block code in BSC ,Hamming code and their applications.

Unit 4
Cyclic codes and its basic properties, Generator & parity check matrix of cyclic codes, encoding & decoding circuits, syndrome computation & error detection, cyclic Hamming codes.

Unit 5
Introduction to BCH codes, its encoding & decoding, error location & correction. Introduction to convolution codes, its construction & viterbi algorithm for maximum likelihood decoding.

Reference Books:

2 Digital Communication by Haykins Simon Wiley Publ.
3 Error control Coding: Theory and Application, by Shu Lin and Cosstlello,PHI
4 Modern analog and Digital Communication system, by B.P. Lathi
5 Digital Communication by Sklar, Pearson Education
6 Principal of Communication system by Taub & Schilling, TMH
7 Error Correcting Codes by Peterson W., MIT Press
8 Digital Communication by Carson, MGH
9 Digital Communication by Proakis, TMH
MTMW– 202 DSP Application

Unit 1

Unit 2

Unit 3

Unit 4

Unit 5
Discrete time Random signals: Discrete time random process, Averages, Spectrum Representation of finite energy signals, response of linear systems to random signals. power spectrum estimation: Basic principles of spectrum estimation, estimate of auto con variance, power spectrum ,cross con variance and cross spectrum. Advance signal processing technique and transforms: multi rate signal processing- down sampling/up sampling, introduction to discrete Hilberts Transform, Wavelet Transform, Haar Transform etc.

Reference Books:

1. Discrete time signal Processing by Oppenheim & Schaffer PHI 2nd Edition
2. Digital Signal Processing using MATLAB by S.Mitra
3 Digital Signal Processing By Proakis Pearson Education
4. Theory & application of Digital Signal Processing by L.R.Rabiner & B. Gold PHI
UNIT -1
Review of basic communication theoretical concept, Digital Modulation Techniques, On-Off Keying: Frequency shift keying, Phase shift keying, Quadrature Phase shift keying, Frequency Multiple access; Demand assigned multiple access, Code Division Multiple access.

UNIT -2

UNIT -3
Statistical communication theory in digital communication, Statistical decision theory signal vectors, Multiple sample detector optimum, Binary transmission, M-array transmission additive white Gaussian noise channel, Matched filter detection signal constellation and probability of error calculation, Binary signals M-array orthogonal signals.

UNIT -4

Reference Books:

1. Mobile Communication By Jochen Schiller
2. Digital Communication By Taub & Schiller
MTMW – 204 MICROWAVE MEASUREMENTS

Unit 1
Microwave detectors, detector characteristics, law of detection, detector mounts, tuning arrangements of probes. Slotted line, effect of penetration of probe, measurement of VSWR and transmission line impedance, measurement of detection law, effect of detection law on VSWR measurement, techniques of high VSWR measurement, VSWR meter.

Unit 2

Unit 3
Measurement of microwave frequency, standard resonating cavities, electronic method of measurement, Microwave counters, comparison of various methods.

Unit 4
Microwave components – attenuator, Phase shifters wave-guide joints, directional couplers, matching screw wave-guide excitation connectors and cables.

Unit 5
Antenna measurement – antenna pattern, antenna impedance, near field and far field errors, anechoic chambers, Antenna Range.

Reference Books:

1. A.K. Maini – Microwave & Radar, Khanna Publisher
MTMW– 205 RESEARCH METHODOLOGY

Unit 1

Assignment 1: Identify Research Problem based on Trends

Unit 2

Assignment 2: Identify Research methodology for Research Problem identified

Unit 3
Data Analysis: Data Preparation – Univariate analysis (frequency tables, bar charts, pie charts, percentages), Bivariate analysis – Cross tabulations and Chi-square test including testing hypothesis of association.

Assignment 3: Propose a method for Data Analysis on Research problem identified

Unit 4

Assignment 4: Write paper on Literature Review of your research Problem

Unit 5
Use of tools / techniques for Research: methods to search required information effectively, Reference Management Software like Zotero/Mendeley, Software for paper formatting like LaTeX/MS Office, Software for detection of Plagiarism. Documentation of Research work, Synopsis, Presentations, Writing Research papers on experimentation results, proposed methods, thesis formats

Assignment 5: Write Synopsis for proposed Research Problem
Reference Books:

2. Business Research Methods – Alan Bryman & Emma Bell, Oxford University Press.
3. Research Methodology – C.R.Kothari
4. Select references from the Internet.